Chemie polyfunktioneller Moleküle CXIII *. Komplexe des Dicobaltoctacarbonyls mit den Liganden Bis(diphenylphosphino)amin und -amid **

Diana Pohl, Jochen Ellermann, Falk A. Knoch, Matthias Moll

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058 Erlangen (Deutschland)

Walter Bauer

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen (Deutschland) (Eingegangen den 1. Februar 1994)

Abstract

The yield of the earlier published $Co_2(\mu-CO)_2(CO)_4(\mu-dppa) \cdot 1/2 C_6H_6 (4 \cdot 1/2 C_6H_6)$ [dppa = bis(diphenylphosphino)amin (1)] could now be increased from 30% to 80%. In the polar solvent tetrahydrofuran (THF) $Co_2(CO)_8$ and dppa react to the ionic complex $[Co(CO)(dppa)_2][Co(CO)_4] \cdot 2$ THF (5a $\cdot 2$ THF). Metatheses of 5a $\cdot 2$ THF with NaBPh₄ in ethanol led to the formation of $[Co(CO)(dppa)_2]BPh_4$ (5b). Under UV irradiation $4 \cdot 1/2 C_6H_6$ and dppa gives the CO-bridging-free $Co_2(CO)_4(\mu-dppa)_2$ (7a). The course of the reaction was studied by infrared spectroscopy. After adding *n*-hexane to the THF solution of 7a the CO-bridged isomer $Co_2(\mu-CO)_2(CO)_2(\mu-dppa)_2$ (7b) precipitates. The structure of 7b was determined by X-ray crystallography. $Co_2^{+1}(\mu-CO)(CO)_4(\mu-PPh_2 - N - PPh_2^{\circ})$ (9) was prepared from $4 \cdot 1/2 C_6H_6$, *n*-butyllithium and ClPPh₂ in benzene. Suitable crystals for X-ray structural studies were obtained from a CH_2Cl_2/n -hexane mixture. The X-ray investigation showed that the Co-Co bond bridging anions $[Ph_2P - N - PPh_2]^{\circ}$ and PPh_2° are in *trans* position to each other in $9 \cdot CH_2Cl_2$. With the cobalt atoms they form five and three membered rings in the same plane. All compounds were characterized by ¹H NMR, ¹³C{¹H}NMR, ³¹P{¹H} NMR and IR spectroscopy.

Zusammenfassung

Die Umsetzung von $Co_2(CO)_8$ mit dppa in polaren und unpolaren Lösungsmitteln, sowie in unterschiedlichen Molverhältnissen führt zu verschiedenen Verbindungen. Für die schon früher publizierte Verbindung $Co_2(\mu-CO)_2(CO)_4(\mu-dppa) \cdot 1/2 C_6H_6$ $(4 \cdot 1/2 C_6H_6)$ [dppa = bis(diphenylphosphino)amin (1)] konnte die Ausbeute jetzt von 30% auf 80% gesteigert werden. In dem polaren Lösungsmittel Tetrahydrofuran (THF) reagieren $Co_2(CO)_8$ und dppa zu dem ionischen Komplex [$Co(CO)(dppa)_2$] [$Co(CO)_4$] · 2 THF ($5a \cdot 2$ THF). Methathese von $5a \cdot 2$ THF mit NaBPh₄ in Ethanol liefert [$Co(CO)(dppa)_2$]BPh₄ (5b), das nach Umkristallisation aus THF/*n*-Hexan als $5b \cdot 2$ THF ausfällt. Unter UV-Bestrahlung setzt sich $4 \cdot 1/2 C_6H_6$ mit dppa in THF zu dem CO-brückenfreien $Co_2(CO)_4(\mu$ -dppa)_2 (7a) um. Der Reaktionsverlauf wurde IR-spektroskopisch verfolgt. Überraschenderweise fällt aus der 7a enthaltenden THF-Lösung nach Zugabe von *n*-Hexan das CO-verbrückte Isomere $Co_2(\mu-CO)_2(CO)_2(\mu-dppa)_2$ (7b) aus, dessen Struktur röntgenographisch sichergestellt wurde. Die schrittweise Umsetzung von $4 \cdot 1/2 C_6H_6$ mit *n*-Butyllithium und CIPPh₂ in Benzol führt zu $Co_2^{+1}(\mu-CO)(CO)_4(\mu-PPh_2^{\circ})(\mu-Ph_2^{\circ}-N-PPh_2^{\circ})$ (9). Für eine Röntgenstrukturanalyse geeignete Kristalle $9 \cdot CH_2Cl_2$ erhält man aus einer CH_2Cl_2/n -Hexan Lösung. Die Kristallstrukturanalyse zeigt, daß die beiden die (Co-Co)-Bindung überbrückenden Anionen [Ph_2P = N = PPh_2]⁶ und PPh_2⁶ in *trans*-Position zueinander stehen und dabei mit den Cobaltatomen planare Fünf- und Dreiringe bilden die in einer Ebene liegen. Alle Verbindungen wurden ¹H-NMR-, ¹³C{¹H}-NMR-, ³¹P-{¹H}-NMR- und IR-spektroskopisch charakterisiert.

Key words: Cobalt; Phosphane; Amine; Amide; Crystal structure; Bifunctional ligands

Correspondence to: Professor Dr. J. Ellermann.

** Herrn Professor Dr. R. Schmutzler zum 60. Geburtstag gewidmet.

^{*} CXII. Mitteilung siehe ref. 1.

1. Einleitung

Bis(diphenylphosphino)amin, (Ph₂P)₂NH (dppa, 1), das schon vor geraumer Zeit auf verschiedene Weise synthetisiert wurde [2-5], beanspruchte in den letzten Jahren als Ligand wegen seiner vielfältigen Koordinationsmöglichkeiten besonderes Interesse. So fand man, daß 1 als P-Donator einzähnig [6-11], zweizähnigchelatisierend [5-9,11-21] oder zweizähnig-metallverbrückend [6,9-11,13,14,22-32] wirken kann. Parallel zur Metallverbrückung wird vielfach die Ausbildung von Metall-Metall-Bindungen beobachtet [11,13,25-28,30]. Weiterhin geht der NH-Wasserstoff des Liganden in manchen Komplexen mit noch donorfähigen Ionen, Gruppen oder Solvatmolekülen zusätzliche Wasserstoffbrückenbindungen ein [6,13–15,17,18,22, 23,25,27]. Auch ist er durch Metalle ersetzbar [8,31,33-37]. Kürzlich konnten W. Beck et al. [9] zeigen, daß durch monometallische Koordination von 1 an Rhenium der (P-H)-tautomere Ligand Ph₂P-N=P(H)Ph₂ (1') entsteht.

Von den metallsubstituierten Derivaten des 1 hat in jüngster Zeit das Lithium-bis(diphenylphosphino)amid, LiN(PPh₂)₂ (2) besonderes Interesse gefunden [38,39]. Es ist in situ [31] und in Substanz [34,40] aus 1 [3,5] und ⁿBuLi gut zugänglich und wurde in chemischen [35,40– 42] und komplexchemischen Reaktionen [8,30,35,43– 45] verwendet.

Kaum untersucht war bisher das komplexchemische Verhalten des metallverbrückenden dppa (1) gegenüber mehrkernigen Metallcarbonylen [26,46,47]. Von Dicobaltoctacarbonyl $\text{Co}_2(\text{CO})_8$ (3) war bekannt und röntgenographisch abgesichert [26], daß es mit dppa den Komplex $\text{Co}_2(\mu\text{-CO})_2(\text{CO})_4(\mu\text{-dppa}) \cdot 1/2 \text{ C}_6\text{H}_6$ $(4 \cdot 1/2 \text{ C}_6\text{H}_6)$ bildet. Allerdings waren die Ausbeuten für weitere präparative Arbeiten mit dieser Substanz zu gering. Dementsprechend versuchten C. Moreno et al. [48] die Ausbeuten an 4 durch Umsetzung von dppa mit 3 in Methylenchlorid zu steigern.

Zwar konnte eine Ausbeutenerhöhung erreicht werden, allerdings enthielt 4, wie wir fanden, 1/2 Mol CH_2Cl_2 pro Formeleinheit. Damit war 4 1/2 CH_2Cl_2 für bestimmte präparative Arbeiten, z.B. der Lithiierung an der (NH)-Gruppe (Kapitel 5) nicht geeignet.

2. Anmerkungen zu $Co_2(\mu$ -CO)₂(CO)₄(μ -dppa) · 1/2 C_6H_6 (4 · 1/2 C_6H_6)

Durch Variation der Reaktionsbedingungen (s. Exp. Teil) wurde es möglich die Ausbeute an $4 \cdot 1/2 C_6 H_6$ gegenüber der bestehenden Literatur [26] zu verdoppeln. Da von $4 \cdot 1/2 C_6 H_6$ damals [26] nur wenige spektroskopische Daten ermittelt werden konnten, werden sie hiermit nachgetragen (s. Exp. Teil). Zu dem

³¹C{¹H}-NMR-Spektrum ist zu bemerken, daß die in $4 \cdot 1/2 C_6 H_6$ enthaltenen Phosphoratome miteinander koppeln. Dementsprechend geben die Kohlenstoffatome im ¹³C{¹H}-NMR-Spektrum Anlaß zu Multipletts, die nicht nach den Regeln erster Ordnung analysiert werden können, da sie X-Teile von ABX-Systemen sind [49]. Die Vorzeichenkombination der beiden P,C-Kopplungen, kann hier entscheidenden Einfluß auf das Aussehen der Spektren haben. Wie für dppa-verbrückte Metallkomplexe verschiedentlich beobachtet [22], sind die Signale der C-ipso-, C-o- und C-m-Atome des Liganden 1 in $4 \cdot 1/2$ C₆H₆ durch sich überlagernde ³¹P-¹³C-Kopplungen zu "virtuellen Triplets" [50] bei $\delta = 137.83$, 131.36 und 129.33 ppm aufgespalten. Die schwachen Satelliten des C-ipso-Signals bei $\delta = 137.83$ ("t") (J = 113.6 Hz) haben wahrscheinlich ihre Ursache in einer P.P-Kopplung [50]. Für die C-p-Resonanz bei 131.28 ppm, die mit der C-o-Resonanz überlagert, wird lediglich Singulettcharakter festgestellt. Offensichtlich sind die longrange-Kopplungskonstanten ${}^{4}J({}^{31}P-{}^{13}C)$ und ${}^{6}J({}^{31}P-{}^{13}C)$ ¹³C) nahezu oder gleich Null. Die gefundenen Kopplungskonstanten und die Lage der ¹³C-Phenyl-Signale entsprechen in etwa den Erwartungen [50,51]. Ein Singulett bei $\delta = 129.0$ ppm kann aufgrund der Intensität dem halben Mol C₆H₆ pro Formeleinheit 4 zugeordnet werden [52]. Bemerkenswert erscheint, daß alle CO-Gruppen in 4 nur ein Singulett-Resonanzsignal bei $\delta = 215.45$ ppm liefern. Daraus folgt, daß alle CO-Gruppen bei Raumtemperatur in Lösung rasch in der NMR-Zeit-Skala ihre Plätze tauschen.

3. $[Co(CO)(dppa)_2][Co(CO)_4] \cdot 2$ THF (5a $\cdot 2$ THF) und $[Co(CO)(dppa)_2]BPh_4 \cdot 2$ THF (5b $\cdot 2$ THF)

Setzt man 3 mit 1 im Molverhältniss 1:3 um, so bildet sich entsprechend Gl. (1) unter lebhafter CO-Entwicklung $5a \cdot 2$ THF.

$$\begin{array}{c} \operatorname{Co}_{2}(\operatorname{CO})_{8} + 3 \operatorname{dppa} & \xrightarrow{\operatorname{RT/THF}} \\ (3) & (1) & \xrightarrow{-\operatorname{dppa}} \\ & & \\ & \left[\begin{array}{c} \operatorname{Ph}_{2}\operatorname{P} & | \\ \operatorname{Ph}_{2}\operatorname{P} & | \\ \operatorname{OC} & -\operatorname{Co} & \operatorname{PPh}_{2} \\ & & & \\ \operatorname{Ph}_{2}\operatorname{P} & | \\ \operatorname{Ph}_{2}\operatorname{P} & | \\ \operatorname{NH} \end{array} \right] \left[\operatorname{Co}(\operatorname{CO})_{4} \right] & (1) \\ & (5a) \end{array}$$

Der ionische Komplex 5a wird zunächst als braunes Öl erhalten, welches nach Umkristallisation aus THF/*n*-Hexan rotorange Mikrokristalle von $5a \cdot 2$ THF liefert. Im Gegensatz zu der Darstellung von $4 \cdot 1/2 \text{ C}_6\text{H}_6$ führen hier veränderte Reaktionsbedingungen (polares Lösungsmittel und anderes Molverhältnis) zu einer Valenzdisproportionierung. Die Verbindung **5a** · 2 THF erweist sich als sehr stabil, da bei weiterem Rühren (3 Tage, Raumtemperatur) keine Veränderungen eintreten. Der Überschuß an dppa (3 Mol an Stelle der benötigten 2 Mol) ist offensichtlich wichtig. Wählt man nämlich Co₂(CO)₈ und dppa im Molverhältnis 1:2, so laufen nur die Teilschritte (1a) und (1b) der Gesamtreaktion (1) ab. Das gebildete $[Co(CO)_2(\eta^2-dppa)(\eta^1-dppa)][Co(CO)_4]$ (6) konnte anhand seiner für solche Komplexe spezifischen ν (CO)-Valenzschwingungen [53] bei 2013, 1965 $[(\nu(CO)-Kation] und 1882 [\nu(CO)-$ Anion] cm⁻¹ identifiziert werden.

$$Co_{2}(CO)_{8} + dppa \longrightarrow [Co(CO)_{3}(\eta^{2} - dppa)][Co(CO)_{4}] + CO$$

$$(1a)$$

$$+ dppa \int -CO$$

$$[Co(CO)_2(\eta^2 - dppa)(\eta^1 - dppa)][Co(CO)_4]$$

 $[Co(CO)(\eta^2-dppa)_2][Co(CO)_4]$ (1) (5a)

Leitfähigkeitsmessungen (in THF) weisen 5a als schwachen 1:1 Elektrolyten aus.

Metathese von 5a 2 THF mit NaBPh₄ in Ethanol liefert $[Co(CO)(dppa)_2]BPh_4$ (5b), das aus THF/n-Hexan als 5b · 2 THF auskristallisiert. Der Ersatz des Anions $[Co(CO)_4]^{\Theta}$ in **5a** durch $[BPh_4]^{\Theta}$ wird erkenntlich am Fehlen der ν (CO)-Absorption des [Co(CO)₄]^{Θ} bei 1882 cm⁻¹ im Festkörper-IR-Spektrum von $5b \cdot 2$ THF (s. Tabelle 1). Die zusätzlichen Banden bei 1196, 791 und 612 cm⁻¹, welche B-sensitiven-Valenzschwingungen q, r und y entsprechen, geben einen eindeutigen Hinweis für die Anwesenheit von [BPh4]^o. Zwischen 1940 und 1953 cm⁻¹ tritt sowohl im IR-Spektrum von 5a · 2 THF als auch von 5b · 2 THF erwartungsgemäß eine ν (CO)-Bande für die CO-Gruppe des Kations auf. Außerdem beweisen die $\nu(CH_2)$ -Banden, daß die Verbindungen 5a, b THF enthalten, welches teilweise mit den (NH)-Gruppen Wasserstoffbrückenbindungen eingeht. Im Bereich von 3140-2800 cm⁻¹ findet man jeweils eine breite Absorption, die mit den ν (CH)arom. und ν (CH₂)-Banden überlagert. Diese Absorption ist charakteristisch für $(NH \cdots OC_4H_8)$ -Wasserstoffbrückenbindungen. Anscheinend geht in 5a. b jeweils eine (NH)-Gruppe der beiden koordinierten dppa-Liganden eine Wasserstoffbrücke zu einem der zwei THF-Moleküle ein, während die andere (NH)-

TABELLE 1. Charakteristische IR-Absorptionen (in cm^{-1}) von $[Co(CO)(Ph_2P-NH-PPh_2)_2][Co(CO)_4] \cdot 2$ THF $(Sa \cdot 2$ THF) $(Co(CO)(Ph_2P-NH-PPh_2)_2]BPh_4 \cdot 2$ THF $(Sb \cdot 2$ THF)

Zuordnung	IR ^a	IR ^a
-	5a·2 THF	5b · 2 THF
v(NH)endst.	3314 s	3268 s-m
$\nu(\mathrm{NH}\cdots\mathrm{OC}_4\mathrm{H}_8)$	3100 Sch –	כ 3139 s, br
ν(CH)arom.	3070 Sch -	
	3052 m 🔟	3047 s-m 🔟
ν (CH ₂), THF	2974 m	2979 s
	2869 s	2873 ss
ν (CO), Kation	1944 st ^b	1951 sst ^c
ν (CO), Anion, F ₂	1882 sst ^b	
$\nu(CC)k$	1585 s	1578 s-m
$\nu(CC)$ l	1570 s	1558 s
ν (CC)m	1480 s-m	1477 s-m
ν (CC)n	1434 m-st	1434 m
ν(CC)0	1331 s	1325 ss
δ(CH)e	1304 s	1306 s
δ(NH)	1251 s-m, br	1260 s-m
B.sens.q, $B-C_6H_5$		1196 s-m
δ(CH)a	1187 s-m	1182 s
δ(CH)c	1158 s	1159 ss
ν(CC) od.	1132 s	
γ(CH), THF		
P-sens.q, $P-C_6H_5$	1097 m-st	1096m
δ(CH)d	1066 s	1066 s
ν(C-O-C), THF	1047 m	1047 s-m
δ(CH)b	1026 s-m	1029 s
γ-ring, Ph	998 s-m	998 ss
γ(CH)j	951 s	
γ(CH)h	910 s	918 Sch –
$\gamma(\text{NH})/\nu(\text{NP}_2)$	882 m	872 s-m
	820 m-st	825 m
B-sens.r, B-C ₆ H ₅		791 s-m
γ(CH)f	742 m-st	740 m-st
P-sens.r, P-C ₆ H ₅	710 Sch –	698 st
Φ(CC)v	694 st	
α (CCC)s	620 ss	624 s, Sch –
unđ	605 ss	,
B-sens.y, B-C ₆ H ₅		612 s-m
α (CCC)s		590 ss
δ(CoCO), Anion	543 st	
$\nu(\text{NP}_2)/\gamma(\text{HNP}_2)$	537 st	539 m-st
P-sens.y, PPh	512 m-st –	510 m –
	502 s-m	500 Sch
ν (CoC), Anion	432 s	
ν (CoC), Kation	415 s-m	417 s-m
$\nu(NP_2)/\gamma(HNP_2)$ P-sens.y, PPh $\nu(CoC)$, Anion $\nu(CoC)$ Kation	54.5 st 537 st 512 m-st 502 s-m 432 s 415 s-m	539 m-st 510 m 500 Sch

^a Substanz fest in KBr gepreßt; ^b **5a** \cdot 2 THF in THF gelöst: ν (CO): 1949 m, 1884 st (cm⁻¹); ^c **5b** \cdot 2 THF in THF gelöst: ν (CO): 1948 m (cm⁻¹). Abkürzungen s. Exp. Teil.

Gruppe frei bleibt und Anlaß zu scharfen ν (NH)-Banden bei 3314 bzw. 3268 cm⁻¹ gibt (Tabelle 1). Das zweite THF-Molekül hat demgemäß jeweils nur raumausfüllenden Charakter im Ionengitter von **5a**, **b**. Die Anwesenheit von THF wird außerdem anhand der charakteristischen ν (C-O-C)-Bande bei 1047 cm⁻¹ erkannt [54]. Weitere IR-Absorptionen können Tabelle 1 entommen werden. Das ³¹P{¹H}-NMR-Spektrum des in CD_2Cl_2 gelösten **5a** · 2 THF zeigt trotz nicht-äquivalenter P-Atome nur ein Singulett bei $\delta = 63.1$ ppm. Es muß daher bei Raumtemperatur für **5a** ein fluktuierendes Verhalten angenommen werden.

Das ¹³C{¹H}-NMR-Spektrum des in CD_2Cl_2 gelösten **5a** · 2 THF zeigt bemerkenswerterweise für alle CO-Gruppen nur ein breites Signal bei 205.45 ppm (weitere Angaben s. Exp. Teil).

4. $Co_2(CO)_4(\mu - dppa)_2$ (7a), $Co_2(\mu - CO)_2(CO)_2(\mu - dppa)_2$ (7b) und $Co_2(\mu - CO)_2(CO)_2(\mu - dppa)_2 \cdot 2$ THF (7b $\cdot 2$ THF)

4.1. Präparative und spektroskopische Ergebnisse

Setzt man $4 \cdot 1/2$ C₆H₆ und dppa in THF unter UV-Belichtung im Molverhältniss 1:1 um, so bildet sich nach Gl. (2) der CO-brückenfreie Komplex 7a.

$$Co_{2}(\mu-CO)_{2}(CO)_{4}(\mu-dppa) \cdot 1/2 C_{6}H_{6} + dppa \xrightarrow{h\nu}_{THF}$$

$$4 \cdot 1/2 C_{6}H_{6}$$

$$Co_{2}(CO)_{4}(\mu-dppa)_{2} + 2 CO + 1/2 C_{6}H_{6} \quad (2)$$
7-

7a

Der IR-spektroskopisch untersuchte Verlauf der Reaktion (2) zeigt eindeutig die durch die Belichtung bewirkte Umwandlung von $4 \cdot 1/2 C_6 H_6$ zu 7a und ist in den Abbn. 1-3 dargestellt. Nach 1 Stunde Reaktionszeit sind neben den zu $4 \cdot 1/2 C_6 H_6$ gehörenden charakteristischen endständigen ν (CO)-Banden bei 2042, 2009 und 1983 cm⁻¹ bzw. den Brücken-CO-Banden bei 1828 und 1801 cm⁻¹ zusätzlich drei neue Banden bei 1955, 1935 und 1905 cm⁻¹ erschienen. Im Laufe der Belichtung verschwinden die CO-Valenzschwingungsbanden des Edukts und man erhält 4 neue ν (CO)-Absorptionen, welche sich ausschließlich im Bereich endständiger ν (CO)-Valenzschwingungen befinden. Aus dieser Reaktionslösung kristallisieren nach Zugabe von n-Hexan rotorange Nadeln des zu 7a isomeren, CO-verbrückten $Co_2(\mu-CO)_2(CO)_2(\mu$ dppa)₂ (7b) aus, das eindeutig spektroskopisch und röntgenstrukturanalytisch bestimmt werden konnte. Im Festkörper-IR-Spektrum (Tabelle 2) weist 7b zwei ν (CO)-Banden terminaler CO-Gruppen bei etwa 1952 und 1926 cm⁻¹ und zwei Brücken-CO-Absorptionen bei 1788 und 1773 cm⁻¹ auf.

Die substituentenunabhängigen, lagekonstanten Phenylschwingungsbanden [55–57] wurden, soweit sie nicht mit charakteristischen Absorptionen von 7a, b und 7b \cdot 2 THF überlagern, in Tabelle 2 weggelassen.

Aus den Festkörper-IR-Spektren (Tabelle 2) und den Elementaranalysen (Exp. Teil) folgt weiterhin, daß die Verbindung $Co_2(\mu$ -CO)_2(CO)_2(dppa)_2 offenbar in zwei Formen auftritt, einer THF-freien (7b) und einer solvathaltigen Form (7b · 2 THF). Letztere entsteht manchmal unter noch nicht aufgeklärten Bedingungen nach Zugabe von *n*-Hexan aus der Reaktionslösung (Gl. (2)). Im IR-Spektrum von 7b · 2 THF beobachtet man neben den sonst vergleichbaren Banden zusätzlich 2 ν (CH₂)-Banden bei 2973 und 2868 cm⁻¹ sowie die charakteristischen ν (C-O-C)-Absorptionen des THF

262

Abb. 2. Belichtung (Gl. (2)) nach 4 1/2 Stunden.

bei 1050 cm⁻¹ [54]. Aus der Breite und langwelligen Verschiebung der ν (NH)- und δ (NH)-Banden von 7b \cdot 2 THF folgt, daß die THF-Moleküle jeweils an die NH-Gruppen über (NH \cdots O)-Wasserstoffbrückenbindungen fixiert sind. Bemerkenswert erscheint weiterhin, daß die Festkörper-IR-Spektren sowohl des röntgenographisch abgesicherten 7b als auch des 7b \cdot 2 THF neben den zwei charakteristischen ν (CO)-Absorptionen der endständigen CO-Gruppen bei etwa 1950 und 1925 cm⁻¹ noch jeweils drei zusätzliche, weniger intensive, CO-Valenzschwingungsbanden bei höheren Wellenzahlen aufweisen. Für ihr Auftreten werden Kristalleffekte angenommen. Eine Überprüfung dieser Annahme war nicht möglich, denn sowohl beim Lösen von 7b als auch von 7b \cdot 2 THF in THF entsteht unter Öffnung der Brücken-CO-Bindun-

263

gen das Isomere $\text{Co}_2(\text{CO})_4(\mu\text{-dppa})_2$ (7a) mit nur noch endständigen CO-Gruppen (Tabelle 2).

Aufgrund des ³¹P{¹H}-NMR-Spektrums von 7a, das nur ein Signal bei $\delta = 86.96$ ppm aufweist, ist anzuneh-

TABELLE 2. Charakteristische IR-Absorptionen (in cm⁻¹) von $Co_2(\mu-CO)_2(CO)_2(\mu-Ph_2P-NH-PPh_2)_2$ (7b), 7b · 2 THF, und $Co_2(CO)_4(\mu-Ph_2P-NH-PPh_2)_2$ (7a)

Zuordnung	IR ^a	IR ^a	IR ^b
	7Ь	7 b ∙2 THF	7a
ν (NH)	3317 s, sf		
$\nu(\mathrm{NH}\cdots\mathrm{OC}_{4}\mathrm{H}_{2})$,	3182 s. br	
v(CH)arom.	3071 s	3070 Sch -	
,	3052 s-m	3051 s-m	
	3016 s		
$\nu(CH_2)$, THF		2973 s	
•		2868 s-m	
ν (CO)endst.	2040 s ^c	2040 s ^c	
	2002 s-m ^c	2001 s-m ^c	
	1978 m ^c	1977 m ^c	1977 m
	1952 sst	1953 sst	1955 m-st
	1926 sst	1923 sst	1935 st
			1906 m-st
ν (C=O)br.	1788 m-st	1777 m-st	
	1773 sst	1765 st	
ν(CC)0	1329 s	1322 s, Sch	
δ(CH)e	1306 s-m		
	1272 s-m, sf	1278 s-m,Sch	
δ(NH)	1247 m-st, sf		
$\delta(\mathrm{NH}\cdots\mathrm{OC}_4\mathrm{H}_8)$		1227 m, br 🚽	
δ (CH)a	1179 s-m	1177 s	
δ(CH)c	1156 s-m		
	1125 m-st	1124 m-st	
P-sens.q, P-C ₆ H ₅	1090 st	1093 st	
δ(CH)d	1066 s-m	1065 s-m	
ν(C–O–C), THF		1050 s-m	
γ(CH)h	922 sSch		
$\nu(\text{NP}_2)/\gamma(\text{NH})$	897 st, sf ⊥	ך 904 m, br	
		892 s-m, Sch ⊐	
$\nu(\text{NP}_2)$	790 s	774 s-m, br	
	762 s-m	743 m	
γ(CH)f	748 m	734 m	
P-sens.r, $P-C_6H_5$	733 st	724 m	
$\Phi(CC)v$	692 sst	693 sst	
$\delta(CoCO)$	629 m	632 s-m	
und	616 s-m, Sch	616 s	
α (CCC)s	606 s-m, Sch ⊥	604 ss	
$\delta(CoCO)$		588 m-st _	1
$\nu(\text{NP}_2)/\gamma(\text{HNP}_2)$	540 st	555 m-st, Sch	1
	529 sst		
P-sens.y, $P-C_6H_5$	505 st, Sch →	518 st	
	492 m-st	495 m, Sch 🗆	
(0-0)	4// s-m	459 -	
	453 s-m	458 s	
r -sens.t, P - C_6H_5	438 s-m	129 -	
und (CoC)	432 s-m	438 S	
V(LOC)	421 s-m	420 s-m	
	400 S-III	402 S-IN	

^a fest in KBr; ^b gelöst in THF; ^c Kristalleffekte (unsicher Daten). Abkürzungen s. Exp. Teil.

Abb. 4. Strukturvorschlag für 7a (lokale Symmetrie: $C_{2\nu}$; zu erwartende 4 IR- und Raman-aktive ν (CO)-Banden: $2A_1 + 2B_1$). Die Phenylringe wurden aus Gründen der Übersichtlichkeit weggelassen.

men, daß in Lösung alle Phosphoratome äquivalent sind und damit 7a die in Abb. 4 angegebene Struktur besitzt bzw. fluktuiert.

Das ¹H-NMR-Spektrum des in CD_2Cl_2 gelösten **7b** zeigt für die Phenylprotonen ein Multiplett im Bereich von $\delta = 7.5-7.2$ ppm und ein Triplett bei 4.8 ppm für die NH-Protonen (²J[³¹P-¹H] ≈ 1 Hz). Im Spektrum von **7b** · 2 THF sind noch zusätzlich die spezifischen Resonanzen des koordinierten Lösungsmittels (THF) zu erkennen (s. Exp. Teil).

Im ¹³C{¹H}-NMR-Spektrum des in CD₂Cl₂ gelösten 7b treten vier Singuletts bei 213.79, 131.17, 129.50 und 128.24 ppm auf, die den CO-Gruppen bzw. den C-o, C-p und C-m Kohlenstoffatomen der Phenylringe zugeordnet werden. Der Singulettcharakter dieser Resonanzen wird auf ein fluktuierendes Verhalten des Moleküls zurückgeführt. In Übereinstimmung damit und dem Vorliegen eines A₄X-Systems hat das Signal der C-*ipso* Kohlenstoffatome bei 141.4 ppm Quintettcharakter. Die Resonanzen des in 7b · 2 THF enthaltenen Tetrahydrofurans werden bei $\delta = 68.13$ und 25.98 ppm gefunden.

4.2. Röntgenstrukturanalyse von $Co_2(\mu-CO)_2(CO)_2(\mu-dppa)_2$ (7b)

Abbildung 5 zeigt die für $\text{Co}_2(\mu\text{-CO})_2(\text{CO})_2(\mu\text{-dppa})_2$ (7b) ermittelte Molekülstruktur. Der Co-Co Abstand (*ca.* 242 ppm) wird durch die Ligandenverbrükkung gegenüber dem $\text{Co}_2(\text{CO})_8$ (252 ppm, [58]) etwas verkürzt, entspricht aber weiterhin einer Co-Co Einfachbindung. Die Co-C und die C-O Bindungslängen liegen im gleichen Bereich wie diejenigen ähnlicher Cobaltkomplexe, die endständige und Brücken CO-Gruppen enthalten [59].

Beide Co-Atome in 7b werden durch zwei zueinander cis angeordnete CO-Brücken bzw. zwei dppa Liganden verbrückt. Das besondere Merkmal dieser Verbindung sind die P-Co-P Winkel von ca. 104°, welche durch die cis-Anordnung der dppa Liganden bedingt sind.

Die beiden Brücken-CO-Gruppen weisen zueinander einen Faltungswinkel von etwa 76° auf. Der Blick entlang der Co(1)-Co(2) Bindung (Abb. 5) zeigt, daß alle CO-Gruppen auf der einen Seite der Molekülhälfte zu liegen kommen, während die sperrigen dppa-Liganden dagegen abgewinkelt die andere Molekülhälfte ausfüllen.

Jeweils zwei Phosphoratome bilden mit den Stickstoff- und den beiden Cobaltatomen zwei planare Fünfringe ($\overline{Co(1)}$ - $\overline{Co(2)}$ -P(2)-N(1)-P(1) und $\overline{Co(1)}$ - $\overline{Co(2)}$ -P(4)-N(2)-P(3)). Der PNP-Winkel (125°) weicht nur gering von dem des freien Liganden dppa (118.9°, [60]) ab. Die Konformation des koordinierten Liganden ist daher nahezu identisch mit der des freien dppa. Die Co-Atome in 7b sind beide verzerrt oktaedrisch von benachbarten P- und C-Atomen sowie dem zweiten Co-Atom umgeben. Weitere ausgewählte Bindungsabstände und Bindungswinkel sind in Tabelle 3 aufgelistet.

5.
$$\operatorname{Co}_{2}^{+1}(\mu\operatorname{-CO})(\operatorname{CO})_{4}(\mu\operatorname{-Ph}_{2}\operatorname{P} = \operatorname{N} = \operatorname{PPh}_{2}^{\ominus})(\mu\operatorname{-PPh}_{2}^{\ominus})$$

(9)

5.1. Präparative und spektroskopische Ergebnisse

Setzt man $4 \cdot 1/2 \operatorname{C}_6 \operatorname{H}_6$ mit *n*-Butyllithium im Molverhältnis 1:1 in Benzol um, so bildet sich nach Gl. (3) gelbgrünes 8, das in situ mit Diphenylchlorphosphin zu dem tiefroten Komplex 9 weiterreagiert. Neben 9 entsteht in geringer Menge ein gelbes Nebenprodukt, welches wegen seiner im Vergleich zu 9 geringeren Löslichkeit in Benzol zuerst ausfällt, aber bisher noch nicht eindeutig charakterisiert werden konnte. $\operatorname{Co}_2(\mu-\operatorname{CO})(\operatorname{CO})_4(\mu-\operatorname{Ph}_2\operatorname{P}\dots\operatorname{N}\dots\operatorname{PPh}_2)(\mu-\operatorname{PPh}_2)$ (9) kristallisiert aus dem mit *n*-Hexan überschichteten Filtrat in Form tiefroter Kristalle aus.

Abb. 5. Molekülstruktur von $Co_2(\mu-CO)_2(CO)_2(\mu-Ph_2P-NH-PPh_2)_2$ (7b) (Blick entlang der Co(1)-Co(2) Achse).

Die Reaktion von ClPPh₂ mit der in situ vorliegenden metallierten Zwischenstufe **8** läuft entgegen den Erwartungen unter Ausbildung einer PPh₂^{Θ}-Brücke ab. Dabei erhält man einen Komplex in dem die beiden Co-Atome in der Oxidationsstufe +1 vorliegen. Die zweite negative Ladung wird über die PNP-Bindung delokalisiert. Eine erwünschte Ausbildung des N(PPh₂)₃ Liganden am Intermediat **8** tritt nicht ein. Dagegen können einkernige [Ph₂P ... N ... PPh₂]^{Θ}-substituierte Metallcarbonyle derartige Komplexe mit N(PPh₂)₃ als Liganden [61] bilden [8,44].

Wie ein Vergleich der Festkörper-IR-Spektren von $4 \cdot 1/2$ C₆H₆ und 9 zeigt (Tabelle 4) fehlen bei 9 erwartungsgemäß die ν (NH)-Valenz- sowie die δ (NH)und γ (NH)-Deformationsabsorptionen. Neu dagegen ist eine intensive ν (P ... N)-Bande bei 1122 cm⁻¹. Sie weist einen erheblichen (PN)-Doppelbindungsanteil auf und ist typisch für das koordinierte anionische Ligandensystem [Ph₂P ... N ... PPh₂]^{Θ}.

Die Verbindung 9 (Punktgruppe C_s) zeigt vier ν (CO)-Absorptionen endständiger CO-Gruppen (2A' + 2A") sowie eine Brücken-CO-Bande (A'). Die δ (CoCO)-Deformationsbanden werden zwischen 680 und 540 cm⁻¹, die ν (CoC)-Absorptionsbanden zwischen 450 und 400 cm⁻¹ gefunden (Tabelle 5). Auf die Angabe der lagekonstanten substituentenunabhängigen und substituentenabhängigen Schwingungsbanden der PPh₂-Gruppen [55] wurde, soweit keine Überlagerungen mit charakteristischen Absorptionen vorlagen, verzichtet.

Das ³¹P{¹H}-NMR-Spektrum von 9 zeigt zwei Signale bei $\delta = 198.5$ (t, PPh₂) und 85.25 ppm (d, Ph₂P ··· N ··· PPh₂^{Θ}), die mittels Aufspaltungsmuster,

TABELLE 3. Ausgewählte Bindungsabstände (pm) und Bindungswinkel (°) von 7b (Standardabweichungen in Klammern)

Co(1)-Co(2)	242.4(1)	Co(1)-C(1)	175.8(4)
Co(1)-C(3)	191.1(3)	Co(1)C(4)	193.1(3)
Co(1)-P(1)	225.3(1)	Co(1)-P(3)	221.1(1)
Co(2) - C(2)	176.4(3)	Co(2)-C(3)	193.5(4)
$C_{0}(2) - C(4)$	191.8(4)	Co(2)-P(2)	221.5(1)
Co(2)-P(4)	225.0(1)	C(1)-O(1)	114.7(5)
C(2) - O(2)	113.9(4)	C(3)-O(3)	117.9(4)
C(4)O(4)	116.9(4)	P(1)-N(1)	170.2(3)
P(1)-C(10)	183.6(4)	P(1)-C(20)	183.0(4)
P(2)-N(1)	169.1(3)	P(2)-C(30)	182.7(4)
P(2)-C(40)	185.1(3)	P(3)-N(2)	168.4(3)
P(3)-C(50)	181.7(3)	P(3)C(60)	185.1(4)
P(4) - N(2)	170.6(2)	P(4)-C(70)	183.5(3)
P(4)-C(80)	183.2(4)		
Co(2)-Co(1)-C(1)	142.4(1)	Co(2)-Co(1)-C(3)	54.1(1)
C(1)-Co(1)-C(3)	106.9(2)	Co(2)-Co(1)-C(4)	50.7(1)
C(1)-Co(1)-C(4)	98.2(2)	C(3)-Co(1)-C(4)	76.2(2)
Co(2)-Co(1)-P(1)	97.9(1)	C(1)-Co(1)-P(1)	109.7(1)
C(3)-Co(1)-P(1)	81.8(1)	C(4)-Co(1)-P(1)	148.5(1)
Co(2)-Co(1)-P(3)	97.3(1)	C(1)-Co(1)-P(3)	99.7(1)
C(3)-Co(1)-P(3)	148.7(1)	C(4)-Co(1)-P(3)	84.0(1)
P(1)-Co(1)-P(3)	104.7(1)	Co(1)-Co(2)-C(2)	138.9(1)
Co(1)-Co(2)-C(3)	50.5(1)	C(2)-Co(2)-C(3)	98.0(2)
Co(1)-Co(2)-C(4)	51.2(1)	C(2)-Co(2)-C(4)	101.3(2)
C(3)-Co(2)-C(4)	76.0(1)	Co(1)-Co(2)-P(2)	97.4(1)
C(2)-Co(2)-P(2)	104.0(1)	C(3)-Co(2)-P(2)	82.2(1)
C(4)-Co(2)-P(2)	148.6(1)	Co(1)-Co(2)-P(4)	97.6(1)
C(2)-Co(2)-P(4)	110.3(1)	C(3)-Co(2)-P(4)	148.1(1)
C(4)-Co(2)-P(4)	84.1(1)	P(2)-Co(2)-P(4)	104.1(1)
Co(1)-C(1)-O(1)	174.7(3)	Co(2) - C(2) - O(2)	176.6(4)
Co(1)-C(3)-Co(2)	78.1(1)	Co(1)-C(3)-O(3)	143.4(3)
Co(2) - C(3) - O(3)	138.4(2)	Co(1) - C(4) - Co(2)	78.1(1)
Co(1)-C(4)-O(4)	139.4(3)	Co(2) - C(4) - O(4)	142.1(3)
Co(1) - P(1) - N(1)	108.5(1)	Co(1) - P(1) - C(10)	114.2(1)
N(1)-P(1)-C(10)	102.0(1)	Co(1) - P(1) - C(20)	128.5(1)
N(1) - P(1) - C(20)	99.2(2)	C(10) - P(1) - C(20)	100.7(2)
Co(2) - P(2) - N(1)	110.6(1)	Co(2) - P(2) - C(30)	124.2(1)
N(1)-P(2)-C(30)	103.1(2)	Co(2) - P(2) - C(40)	112.8(1)
N(1)-P(2)-C(40)	102.7(1)	C(30) - P(2) - C(40)	101.0(2)
Co(1) - P(3) - N(2)	110.8(1)	Co(1) - P(3) - C(50)	121.4(1)
N(2)-P(3)-C(50)	103.9(2)	Co(1) - P(3) - C(60)	115.1(1)
N(2)-P(3)-C(60)	102.7(2)	C(50) - P(3) - C(60)	100.6(1)
Co(2) - P(4) - N(2)	108.7(1)	Co(2) - P(4) - C(70)	116.0(1)
N(2)-P(4)-C(70)	101.6(1)	Co(2) - P(4) - C(80)	127.4(1)
N(2)-P(4)-C(80)	99.9(2)	C(70) - P(4) - C(80)	99.5(2)
P(1) - N(1) - P(2)	125.6(2)	P(3)-N(2)-P(4)	124.9(2)

chemischer Verschiebung und Integrationsverhältnis zugeordnet werden können.

Aufgrund der Anwesenheit im all-¹²C-Isotopomer von chemisch äquivalenten Phosphoratomen ist das ¹³C-NMR-Spektrum von 9 erwartungsgemäß komplex. Ein Isotopomer mit einem ¹³C-Atom in der *ipso*-Position eines Aromaten an der μ -P-N-P-Brücke bildet streng genommen kein AA'BX-, sondern ein ABCX-Spinsystem, mit A, B, C = ³¹P und X = ¹³C. Gleiches gilt für die *ortho-*, *meta-* und *para-*¹³C-Isotopomere. Eine Auswertung des ¹³C-Spektrums nach den Regeln erster Ordnung ist nicht zulässig. Hingegen bilden die Isotopomere mit ¹³C in den an der μ -PPh₂-Brücke gebundenen Aromaten jeweils ein AB₂X-Spinsystem mit magnetisch äquivalenten P-Atomen in der μ -P-N-P-Brücke.

Zur Ermittlung der C,P-Kopplungskonstanten wurde eine Simulation des experimentellen ¹³C-Spektrums von 9 durchgeführt (Abb. 6). Die daraus erhaltenen Werte für ${}^{n}J(C-P)$ sind in Tabelle 5 zusammengefaßt.

Die fünf CO-Gruppen in 9 ergeben nur ein gemeinsames ¹³C-Signal bei $\delta = 209.85$ ppm, das verbreitert ist. Daraus läßt sich schließen, daß bei Raumtemperatur in CDCl₃-Lösung die endständigen und die Brücken-CO-Gruppen einem raschen Austausch unterliegen. Die Signalverbreiterung legt es nahe, daß der Koaleszenzpunkt gerade überschritten ist. Wegen der Strukturlosigkeit des CO-Signals wurde dieses von der Simulation ausgeklammert.

Für die Simulation der Aromaten-C-Signale stand nur der X-Teil (13 C-Spektrum) zur Verfügung. Der ABC- bzw. der AB₂-Teil wird von den 13 C-Satelliten im ³¹P-Spektrum gebildet. Diese waren im vorliegenden Fall nicht erkennbar. Die Simulation umfaßt daher nur die C.P-Kopplungskonstanten. Die homonukleare Kopplungskonstante der chemisch nicht-äquivalenten P-Atome ist aus dem ³¹P-Spektrum ersichtlich (J = 76.6Hz). Hingegen läßt sich die homonukleare Kopplung der beiden magnetisch äquivalenten P-Kerne der Ph2P-N-PPh2-Brücke nicht im ³¹P-Spektrum erkennen. Zur Simulation des ¹³C-Spektrums wurde daher willkürlich ein Wert von 120 Hz angenommen. Es zeigt sich zudem, daß die Linienform der simulierten ortho-, meta- und para-13C-Signale weitgehend tolerant gegenüber einer Variation der eingegebenen P,P-Kopplungen ist. Dagegen reagiert die Linienform des *ipso*-C-Signals bei $\delta = 141.94$ ppm empfindlicher auf eine Änderung von J(P-N-P). Für J(P-N-P) < 100Hz treten zusätzlich flankierende Linien auf, die im experimentellen Spektrum nicht beobachtet werden. Der angenommene Wert von 120 Hz erscheint daher realistisch.

Das *ipso*-C-Signal bei $\delta = 141.94$ ppm zeigt ferner ein weiteres, interessantes Detail. Während die beiden äußeren Linien aufgespalten sind, erscheint die mittlere Linie als verbreitertes Singulett. Eine genaue Analyse zeigt, daß dies auf den ¹³C-Isotopeneffekt zurückzuführen ist, der sich auf die chemische Verschiebung von Ph₂P-N-P auswirkt. Die Singulettstruktur wird nur dann erhalten wenn in der Simulation $\delta(Ph_2P-N-P)$ um 40 ppb gegenüber $\delta(Ph_2P-N-P)$ hochfeld gesetzt wird. Für $\delta(Ph_2P-N-P) =$ $\delta(Ph_2P-N-P)$ (d.h. für die Annahme eines AA'BX-Spinsystems) spaltet auch die mittlere Linie auf.

Die Simulation bestätigt, daß die Triplettstrukturen der ortho- und meta-C-Signale der Aromaten an der

(P-N-P)-Brücke *nicht* aus einer kombinierten Kopplung des jeweiligen Kohlenstoffs mit *beiden* P-Atomen herrühren. Sie sind vielmehr eine Folge der ebenfalls vorhandenen, homonuklearen P,P-Kopplungen, sowie der Tatsache, daß im all-¹²C-Isotopomer chemisch äquivalente P-Atome vorliegen. Die Spektrenauswertung nach erster Ordnung würde hier zu Fehlschlüssen führen. Dieses Phänomen, d.h. eine größere Multiplizität als nach den Regeln erster Ordnung zu erwarten, ist in der Literatur auch als "virtuelle Kopplung" bekannt.

Die para-C-Atome der Aromaten an der (P-N-P)-Brücke weisen keine nennenswerte ${}^{4}J(C-P)$ -Kopplung mehr auf. Dagegen koppeln die para-C-Atome der Aromaten an der (μ -PPh₂)-Brücke ($\delta = 130.34$ ppm) mit einer kleinen Kopplungskonstante zum nächstgelegenen P-Atom (J = 3 Hz).

TABELLE 5. ¹³C-³¹P-Kopplungskonstanten (Absolutwerte, Hz) der Aromaten-C-Atome in 9, erhalten aus der Spektrensimulation (Abb. 6)

	С	μ -Ph ₂ PNP	µ-Ph ₂ PNP	μ -PPh ₂
μ -Ph ₂ P-N-PPh ₂	ipso	70.0	0.0	3.2
	ortho	11.5	0.0	0.0
	meta	11.5	0.0	0.0
	para	0.0	0.0	0.0
μ -PPh ₂	ipso	0.0	0.0	27.4
	ortho	1.5	1.5	10.7
	meta	0.0	0.0	10.1
	para	0.0	0.0	3.0

5.2. Kristallstrukturanalyse von $9 \cdot CH_2Cl_2$

Die Kristallstrukturuntersuchung von $9 \cdot CH_2Cl_2$ zeigt, daß das Bis(diphenylphosphino)amid [Ph₂P ... N-

TABELLE 4. Charakteristische IR-Absorptionen von $Co_2(\mu-CO)_2(CO)_4(\mu-Ph_2P-NH-PPh_2) \cdot 1/2 C_6H_6$ (4 · 1/2 C₆H₆) und $Co_2(\mu-CO)(CO)_4(\mu-Ph_2P-N-PPh_2)(\mu-PPh_2)$ (9)

Zuordnung	IR ^a	IR ^b	IR ^a	IR ^b
	$4 \cdot 1/2 C_6 H_6$	$4 \cdot 1/2 C_6 H_6$	9	9
$\overline{\nu(\text{NH})}$	3295 m			
ν (CH)arom.			3070 Sch ¬	
	3050 s, br		3050 s-m	
			3020 ss	
			3005 ss	
ν(CO)	2045 st	2048 m-st	2040 m-st	2045 s-m
	2004 st, Sch –	2014 st	2007 st	2016 st
	1995 sst		1987 sst	1995 st
	1979 st	1989 sst	1970 sst	1978 m. Sch –
ν(C=O)	1813 m-st	1824 m		,
	1798 st	1796 m-st	1795 st	1799 m
ν(P N)			1122 m-st	
P-sens.q,	1096 m		1098 m	
P-C ₆ H ₅				
$\nu(\text{NP}_2)/\gamma(\text{NH})$	893 m-st			
			895 s	
γ(CH)g			870 s, Sch –	
$\nu(P-N)$			851 s-m –	
			825 s, Sch 🚽	
$\nu(P-N)$	774 s-m		783 m	
$\Phi(CC)v$	700 m-st		695 m-st	
δ(CoCO)	681 m		670 s	
			660 s	
	633 m		630 s	
α (CCC)s			620 Sch –	
			612 s	
δ (CoCO) od.	588 m		571 m	
$\gamma(NP_2)$	555 s-m		548 m-st	
	540 m			
P-sens.y,	510 m		522 m-st	
$P-C_6H_5$	498 m		497 st	
ν (CoC)	448 s		448 s-m	
	432 s		438 s-m	
	412 m-st		420 s-m	

^a fest in KBr; ^b gelöst in CH₂Cl₂.

deutig kürzer als die Abstände für (P-N)-Einfachbindungen (177 pm), [62] wie sie in cyclischen Phosphazenen auftreten und auch in **7b** gefunden wurden (Tabelle 3). Die (P-N)-Bindungslängen von $9 \cdot CH_2Cl_2$

Abb. 6. Experimentelles (obere Reihen) und simuliertes (untere Reihen) ¹³C-Spektrum von 9 bei $B_0 = 9.4 \text{ T}$ (¹H = 400 MHz). Für die Simulation wurden die Daten aus Tabelle 5 sowie die im Text angegebenen P,P-Kopplungskonstanten benutzt.

deuten auf hohe Doppelbindungsanteile und Elektronendelokalisation im koordinierten Amido-Liganden hin.

Die beiden Cobaltatome bilden außerdem mit dem P(3) der (PPh⁶₂)-Gruppe einen stark gespannten Co(1)-P(3)-Co(2)-Dreiring, welcher in einer Ebene mit dem Co(1)-P(1)-N(1)-P(2)-Co(2)-Fünfring liegt. Diese Anordnung unterscheidet $9 \cdot CH_2Cl_2$ von 7b und ähnlich strukturierten Komplexen [59] wo man eine *cis*-Anordnung der koordinierten Liganden feststellt.

Bedingt durch die CO-Brücke und die (PPh_2°) -Brücke beobachtet man eine Verkürzung der (Co-Co)-Bindung (246 pm) um ca. 6 pm gegenüber 252 pm in Co₂(CO)₈. Die CO-Brücke steht dabei nahezu senkrecht auf der Ebene, die durch P(2)-N(1)-P(1)-Co(1)-P(3)-Co(2) beschrieben wird. Die Winkel C(5)-Co(1)-P(1) und C(5)-Co(2)-P(2) betragen 83.6° und 81.5°. In Tabelle 6 sind weitere ausgewählte Bindungsabstände und Bindungswinkel angegeben.

6. Experimenteller Teil

Sämtliche Versuche wurden unter Ausschluß von Luftfeuchtigkeit und Luftsauerstoff in einer Stickstoffatmosphäre durchgeführt. Die Trocknung des Stickstoffs erfolgte mit konz. H_2SO_4 und P_4O_{10} (Sicapent; Fa. Merck-Schuchardt, Darmstadt). Zur Entfernung von Spuren H_2SO_4 wurde der Stickstoff anschließend noch über Aktivkohle geleitet.

Abb. 7. Molekülstruktur von $Co_2(\mu$ -CO)(CO)_4(μ -Ph₂P-N-PPh₂)(μ -PPh₂)·CH₂Cl₂ (9·CH₂Cl₂).

TABELLE 6. Ausgewählte Bindungsabstände (pm) und Bindungswinkel (°) von $9 \cdot CH_2Cl_2$

	2 2		
Co(1)-Co(2)	246.3(3)	Co(1)-C(1)	177.4(9)
Co(1)-C(2)	180.6(10)	Co(1)-C(5)	193.7(8)
Co(1)-P(1)	223.9(3)	Co(1)-P(3)	219.6(3)
Co(2) - C(3)	175.4(9)	Co(2) - C(4)	181.9(10)
Co(2)-C(5)	192.8(9)	Co(2)-P(2)	225.1(3)
Co(2)-P(3)	219.5(3)	C(1)-O(1)	112.3(12)
C(2)-O(2)	113.5(12)	C(3)O(3)	115.3(11)
C(4)-O(4)	113.3(12)	C(5)-O(5)	119.2(10)
P(1)-N(1)	162.6(7)	P(1)-C(10)	184.8(10)
P(1)-C(20)	181.6(9)	P(2)-N(1)	159.8(7)
P(2)-C(30)	179.7(9)	P(2)-C(40)	181.4(9)
P(3)-C(50)	181.7(9)	P(3)-C(60)	181.2(9)
Co(2)-Co(1)-C(1)	147.3(3)	Co(2)-Co(1)-C(2)	100.3(3)
C(1)-Co(1)-C(2)	106.2(4)	Co(2)-Co(1)-C(5)	50.3(3)
C(1)-Co(1)-C(5)	105.2(4)	C(2)-Co(1)-C(5)	148.7(4)
Co(2)-Co(1)-P(1)	96.2(1)	C(1)-Co(1)-P(1)	102.4(3)
C(2)-Co(1)-P(1)	90.5(3)	C(5)-Co(1)-P(1)	83.6(3)
Co(2)-Co(1)-P(3)	55. 9 (1)	C(1)-Co(1)-P(3)	102.1(3)
C(2)-Co(1)-P(3)	95.4(3)	C(5)-Co(1)-P(3)	77.2(3)
P(1)-Co(1)-P(3)	152.1(1)	Co(1)-Co(2)-C(3)	147.1(3)
Co(1)-Co(2)-C(4)	99.4(3)	C(3)-Co(2)-C(4)	109.3(4)
Co(1)-Co(2)-C(5)	50.6(2)	C(3)-Co(2)-C(5)	102.0(4)
C(4)-Co(2)-C(5)	148.7(4)	Co(1)-Co(2)-P(2)	93.5(1)
C(3)-Co(2)-P(2)	100.4(3)	C(4)-Co(2)-P(2)	93.4(3)
C(5)-Co(2)-P(2)	81.5(3)	Co(1)-Co(2)-P(3)	55.9(1)
C(3)-Co(2)-P(3)	105.6(3)	C(4)-Co(2)-P(3)	93.1(3)
C(5)-Co(2)-P(3)	77.4(3)	P(2)-Co(2)-P(3)	149.3(1)
Co(1)-C(1)-O(1)	175.2(9)	Co(1)-C(2)-O(2)	177.1(9)
Co(2)-C(3)-O(3)	177.8(8)	Co(2)-C(4)-O(4)	177.0(9)
Co(1)-C(5)-Co(2)	79.2(3)	Co(1)-C(5)-O(5)	142.1(7)
Co(2)-C(5)-O(5)	138.3(7)	Co(1)-P(1)-N(1)	111.8(3)

Die Reaktionen erfolgten in Schlenkgefäßen, die durch mehrmaliges Ausheizen, Evakuieren und Spülen mit Stickstoff von Sauerstoff und Feuchtigkeit befreit wurden. Alle Lösungsmittel wurden nach Literaturmethoden [63] getrocknet und unter Stickstoffatmosphäre destilliert. Die Schmelz- bzw. Zersetzungspunkte wurden in abgeschmolzenen Kapillaren ermittelt und sind unkorrigiert (Gerät: Electrothermal IA 6304).

C-, H- und N-Analysen wurden mit dem Elementaranalysator Modell 1106 der Fa. Erba Science ausgeführt. Massenspektren: Varian Mat 212, Ionisation durch Felddesorption bzw. Elektronenstoßionisation. Kernresonanzspektren wurden in 5 mm-Röhrchen mit einem Jeol JNM-GX-270- bzw. JNM-EX-270 FT-NMR-Spektrometer registriert. Meßfrequenzen: 270 MHz (¹H-NMR), 67.64 MHz (¹³C-NMR), 109.4 (³¹P-NMR). Die ¹³C-NMR-Spektren von 7b und 9 wurden auf einem Jeol JNM-GX-400 FT-NMR Spektrometer, Meßfrequenz 100.533 MHz aufgenommen.

Die Simulation der ¹³C-Spektren erfolgte mit dem JEOL-Programm comic, das auf dem LAOCOON-Algorithmus basiert. Das C,P-Spinsystem wurde dabei als homonuklear definiert und die chemische Verschiebung von $Ph_2P-N-PPh_2$, $Ph_2P-N-PPh_2$ und μ -PPh₂ willkürlich auf 20, 20 und 0 ppm festgelegt. Als Halbwertsbreite der C-Signale wurde 3 Hz eingesetzt.

Die Registrierung sämtlicher Spektren erfolgte bei Raumtemperatur; alle δ -Werte sind durch D-Lock auf das Lösungsmittel bezogen und auf Standardbedingungen (TMS) umgerechnet, mit positiven δ -Werten bei tiefem Feld. Die ³¹P-NMR-Spektren wurden mit 85% iger Phosphorsäure als externem Standard vermessen. IR-Lösungsspektren wurden in CaF2-Küvetten unter Kompensation der Lösungsmittelabsorptionen, und die Festsubstanzen als KBr-Preßlinge vermessen. Zur Aufnahme der IR-Spektren diente ein Perkin-Elmer 1620 FT-IR-Gerät. Für die IR-Spektren verwendete Abkürzungen: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, Sch = Schulter, br = breit, sf = scharf. UV-Bestrahlungsreaktionen wurden mit einem 25 W Hg-Hochdruckbrenner der Fa. Original Quarzlampen GmbH, Hanau, durchgeführt.

6.1. Ausgangsverbindungen

Bis(diphenylphosphino)amin (1) wurde nach der Methode von H. Nöth und L. Meinel [3] synthetisiert, jedoch in Abänderung der Vorschrift dreimal aus heißem Ethanol umkristallisiert. Gef.: C, 74.86; H, 5.47; N, 3.43. $C_{24}H_{21}NP_2$ (385.4) ber.: C, 74.80; H, 5.49; N, 3.63%. ¹H-NMR (CDCl₃): $\delta = 7.22$ (s, 20 H, C_6H_5); 3.03 (t, 1H, ²J(³¹P-¹H) \approx 1 Hz, NH). ³¹P(¹H)-NMR (CDCl₃): $\delta = 41.9$ (s).

Dicobaltoctacarbonyl (3) wurde von der Hoechst AG, Frankfurt Main gespendet.

Diphenyl-chlorphosphin und *n*-Butyllithium (15%ige Lösung in Hexan) wurde von der Fa. Merck-Schuchardt, D-85662 Hohenbrunn bezogen.

6.2. Di- μ -carbonyl- μ -bis(diphenylphosphino)amin-tetracarbonyldicobalt(0) (Co-Co) $\cdot 1 / 2$ C₆H₆ (4 $\cdot 1 / 2$ C₆H₆)

2.4 g (7.02 mmol) 3 werden in 65 ml C_6H_6 gelöst. Die erhaltene tiefrote Lösung versetzt man portionsweise mit 2.62 g (7.02 mmol) dppa (1) in fester Form und läßt bei Raumtemp. Rühren. Sofort tritt eine starke Gasentwicklung durch austretendes Kohlenmonoxid auf. Um den CO-Partialdruck über der Reaktionslösung zu senken, wird in Abständen von ca. 15 min mit Stickstoff nachgespült. Nach ca. 20 min Rühren fällt $4 \cdot 1/2 C_6 H_6$ als oranger Niederschlag aus. Zur Vervollständigung der Reaktion läßt man insgesamt 27 h rühren, filtriert anschließend über eine D3-Fritte ab, wäscht mit 40 ml n-Hexan nach und trocknet das orange mikrokristalline Pulver 8 h im Hochvakuum. Auf Zugabe von 50 ml n-Hexan läßt sich aus der Mutterlauge weiteres $4 \cdot 1/2$ C₆H₆ gewinnen. Zur Reinigung wird $4 \cdot 1/2$ C₆H₆ aus einer C₆H₆/nHexan-Lösung (1:2) umkristallisiert. Die Verbindung ist in CH₂Cl₂, THF, Aceton und heißem Benzol löslich, in aliphatischen und cycloaliphatischen Kohlenwasserstoffen unlöslich. Ausbeute: 3.98 g (5.62 mmol), 80.1% (bez. auf 1). Schmp. (Zers.) > 161°C. Gef.: C, 55.76; H, 3.70; N, 1.67; C₃₃H₂₄Co₂NO₆P₂ (710.4) ber.: C, 55.80; H, 3.41; N, 1.97%. MS (EI, 70 eV, Einlaßtemp.: 180°C, Quellentemp.: 150°C): m/z: 687 [Co₂(CO)₆Ph₂P(O)– NH–PPh₂; Oxidationsprodukt von 4]; 262 [PPh^{*}₃]. ¹H-NMR (CDCl₃): δ = 7.40 (m, C₆H₅) und 7.35 (s, C₆H₆) [zusammen 23 H]; 3.7 (t, 1H, ²J(³¹P–¹H) = 3.5 Hz, NH). ¹³C{¹H}-NMR (CDCl₃): 215.45 (s, 6C, CO); 137.83 ("t", J = 23.8 Hz, 4C, C-*ipso*, C₆H₅); 131.36 ("t", J = 6.8 Hz, 8C, C-o, C₆H₅); 131.28 (s, 4C, C-*p*, C₆H₅); 129.33 ("t", J = 4.8 Hz, 8C, C-*m*, C₆H₅); 129.0 (s, 3C, 1/2 C₆H₆). ³¹P{¹H}-NMR (CDCl₃): δ = 103.25 (s).

Die Synthese kann auch in CH₂Cl₂ durchgeführt werden, jedoch mit geringerer Ausbeute (75%). Der Komplex enthält pro Molekül 1/2 Mol CH₂Cl₂ (4 · 1/2 CH₂Cl₂). Gef.: C, 51.46; H, 3.19; N, 1.52; C₃₀H₂₁Co₂NO₆P₂ · 1/2 CH₂Cl₂ (713.80) ber.: C, 51.32; H, 3.11; N, 1.96%. ³¹P{¹H}-NMR (CDCl₃): $\delta = 103.4$ (s).

6.3. Carbonyl-di[bis(diphenylphosphino)amin]-cobalt-(+1)-tetracarbonylcobaltat(-1) \cdot 2 Tetrahydrofuran, (5a \cdot 2 C₄H₈O)

0.822 g (2.4 mmol) 3 werden in 30 ml THF gelöst und mit der dreifachen Menge 2.77 g (7.21 mmol) 1 in fester Form umgesetzt. Innerhalb weniger Minuten verfärbt sich die Lösung von tiefrot nach braunrot und gleichzeitig läßt sich eine lebhafte Gasentwicklung (CO) beobachten. Nach 24 h Rühren bei Raumtemp. werden alle flüchtigen Bestandtteile unter vermindertem Druck abkondensiert. Den verbleibenden ölig-viskosen Rückstand nimmt man in 20 ml THF auf, überschichtet mit 60 ml n-Hexan und bewahrt die Mischung 7 d bei Raumtemp. auf. 5a · 2 THF fällt dabei teils als rote Kristalle und teils als orangerote Mikrokristalle aus, die abgefrittet, mit 20 ml n-Hexan gewaschen und im Hochvakuum getrocknet werden. Aufgrund der geringeren Kristallisationseigenschaften (großes Kation, kleines Anion) konnte 5a nicht immer als Pulver (5 $a \cdot 2$ THF), sondern in einigen Fällen nur als Öl isoliert werden. Die Verbindung 5a löst sich gut in THF, CH₂Cl₂, Aceton, heißem Ethanol und ist in aliphatischen Kohlenwasserstoffen unlöslich. Ausbeute: 1.8 g (1.53 mmol), 64%. Schmp. (Zers.) > 97°C. Leitfähigkeit (THF, 21°C): $C = 3.66 \cdot 10^{-4} \text{ mol } 1^{-1}$; $\Lambda_0 = 11 \text{ cm}^2$ $\Omega^{-1} \text{ mol}^{-1}$. Gef.: C, 63.02; H, 4.99; N, 2.12; C₆₁H₅₈Co₂N₂O₇P₄ (1172.93) ber.: C, 62.47; H, 4.98; N, 2.39. ¹H-NMR (CD₂Cl₂): $\delta = 7.7-6.5$ (m, 40 H, C₆H₅); 5.23 (s, 2H, NH); 3.55 (s, 8H, CH₂-O-CH₂, C₄H₈O); 1.75 (s, 8H, CH_2-CH_2 , C_4H_8O). ¹³C{¹H}-NMR (CD₂Cl₂): $\delta = 205.45$ (s, br, 5C, CO); 136.1 (d, 8C, C-*ipso*, C₆H₅ ${}^{1}J({}^{31}P-{}^{13}C) = 136$ Hz); 132.5–131.8 (breites Dublett, 8C, C-*p*, und 16C, C-*o*, C₆H₅); 129.0 (s, 16C, C-*m*, C₆H₅); 68.1 (s, 4C, CH₂–O–CH₂, C₄H₈O), 27.2 (s, br, 4C, CH₂–CH₂, C₄H₈O). ${}^{31}P{}^{1}H$ -NMR (CD₂Cl₂): $\delta = 63.1$ (s).

6.4. Carbonyl-di[bis(diphenylphosphino)amin]-cobalt (+1)-tetraphenylborat $\cdot 2$ Tetrahydrofuran (5b $\cdot 2 C_4 H_8 O$)

0.24 g (0.204 mmol) 5a · 2 THF werden in 10 ml Ethanol gelöst. Dazu gibt man unter Rühren bei Raumtemp. eine Lösung von 0.069 g (0.204 mmol) NaBPh₄ in 5 ml Ethanol. Nach wenigen Sekunden fällt aus der zu Beginn klaren, orangeroten Lösung ein oranger Niederschlag von 5b · 2 THF aus, der abfiltriert, mit 30 ml n-Hexan gewaschen und 5 h im Hochvakuum getrocknet wird. Durch Umkristallisation aus THF/n-Hexan entstehen rote Mikrokristalle, die erneut abfiltriert und im Vakuum getrocknet werden. Der Komplex 5b · 2 THF ist relativ luftstabil und löst sich in Aceton, THF und CH₂Cl₂; unlöslich ist es dagegen in aliphatischen Kohlenwasserstoffen. Ausbeute: 1.6 g (0.12 mmol), 59.36%. Schmp. (Zers.) > 143°C. Gef.: C, 73.27; H, 5.74; N, 1.76; C₈₁H₇₈ $BCo_2N_2O_3P_4$ (1321.19) ber.: C, 73.64; H, 5.95; N, 2.12%.

6.5. $Di-\mu$ -carbonyl-di[μ -bis(diphenylphosphino)amin]-dicarbonyl-dicobalt(0) (Co-Co) (7b), $Di-\mu$ -carbonyldi[μ -bisdiphenylphosphino)amin]-dicarbonyl-dicobalt(0)-(Co-Co) \cdot 2 Tetrahydrofuran (7b \cdot 2 C₄H₈O)

1.53 g (2.15 mmol) $4 \cdot 1/2 C_6 H_6$ werden in einer Belichtungsapparatur in 300 ml THF gelöst und mit 0.83 g (2.15 mmol) dppa (1) in festem Zustand versetzt. Die erhaltene orange Lösung wird unter Rühren bei Raumtemp. (und Wasserkühlung) mit UV-Licht bestrahlt. Das Reaktionsgemisch nimmt sehr schnell, unter lebhafter CO-Entwicklung, eine dunkelrote Farbe an. Nach 10 h, wenn die Umsetzung vollständig abgelaufen ist, wird die tiefrote Lösung im Ölvakuum auf 80 ml eingeengt und mit 40 ml n-Hexan versetzt. Das dabei ausgefallene rotbraune Pulver wird abfiltriert, mit 30 ml n-Hexan nachgewaschen und 8 h im Ölvakuum getrocknet. Erneutes Lösen in THF und Uberschichten mit *n*-Hexan führt nach einigen Tagen Aufbewahrung bei Raumtemp. zur Bildung rotoranger nadelförmiger Kristalle. Diese werden abfiltriert und 5 h im Hochvakuum getrocknet. 7b ist vor allem in gelöstem Zustand (entspricht dann 7a) sehr luftempfindlich und zersetzt sich bei Anwesenheit von Luftsauerstoff innerhalb von Stunden. Die Verbindung 7b ist gut löslich in Aceton, THF und CH₂Cl₂, mäßig löslich in CHCl₃ und unlöslich in *n*-Hexan und *n*-Pentan. Ausbeute: 1.61 g (1.6 mmol), 74,4%. Schmp. (Zers.) > 185°C. Gef.: C, 62.35; H, 4.29; N, 2.84; $C_{52}H_{42}Co_2N_2O_4P_4$ (1000.6) ber.: C, 62.41; H, 4.23; N, 2.80%. MS (EI, 70 eV, Einlaßtemp. 250°C, Quellentemp. 150°C): m/z = 385 [Ph₂P-NH-PPh₂], 262 [PPh^{*}]. ¹H-NMR (CD₂Cl₂): $\delta = 7.5-7.2$ (m, 40 H, C_6H_5); 4.48 (t, 2H, ²J(³¹P-¹H) ≈ 1 Hz, NH), [bei 7b · 2 THF: $\delta = 3.68$ (m, 8H, CH₂-O-CH₂), C_4H_8O); 1.83 (m, 8H, CH₂-CH₂, C_4H_8O). ¹³C{¹H}-NMR (CD₂Cl₂): $\delta = 213.79$ (s, 4C, CO); 141.4 (quin, 8C, C-*ipso*, C_6H_5); 131.17 (s, 16C, C-*o*, C_6H_5); 129.50 (s, 8C, C-*p*, C_6H_5); 128.24 (s, 16C, C-*m*, C_6H_5), [bei 7b · 2 THF: $\delta = 68.13$ (s, 8C, CH₂-O-CH₂), C_4H_8O); 25.98 (s, 8C, CH₂-CH₂, C_4H_8O). ³¹P(¹H}-NMR-(CD₂Cl₂): $\delta = 86.96$ (s).

Unter den gleichen Bedingungen wie für 7b beschrieben ist manchmal auch 7b \cdot 2 THF erhältlich. Allerdings sind die speziellen Umstände, die zur Bildung von 7b \cdot 2 THF führen bisher unklar. 7b \cdot 2 C₄H₈O: Gef.: C, 62.46; H, 5.18; N, 2.17; C₆₀H₅₈-Co₂N₂O₆P₄ (1144.81) ber.: C, 62.94; H, 5.11; N, 2.45%.

TABELLE 7. Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von $Co_2(\mu-CO)_2(CO)_2(\mu-Ph_2P-NH-PPh_2)_2$ (7b) und $Co_2(\mu-CO)(CO)_4(\mu-Ph_2P-N-PPh_2)(\mu-PPh_2)\cdot CH_2Cl_2$ (9·CH₂Cl₂)

	7b	9 · CH ₂ Cl ₂
Summenformel	$C_{52}H_{42}Co_2N_2O_4P_4$	C42H32Cl2C02NO2P3
Molmasse [g/mol]	1000.6	912.4
Farbe, Zustand	Orangerote	Rote
	Nadeln	Blöcke
Kristalldim.		
(mm ³)	$0.7 \times 0.4 \times 0.4$	0.8×0.6×0.5
Raumgruppe	Triklin, P 1	Orthorhombisch, Pbca
<i>a</i> (pm)	1038.7(2)	1349.1(7)
b (pm)	1417.9(3)	1938.9(10)
c (pm)	1641.6(3)	3099.0(3)
α (°)	84.05(2)	
β (°)	85.29(2)	
γ (°)	71.36(2)	
Zellvolumen V		
(nm ³)	2.275(8)	8.106(7)
Formeleinheit Z	2	8
$\rho_{\rm ber.} ({\rm g}{\rm cm}^{-3})$	1.460	1.50
Meßtemp. (K)	200	200
Diffraktometer	Siemens P4	Siemens P4
Strahlung	MoK _a	MoK
Meßverfahren	w-scan	ω-scan
Winkelbereich (°)	$3 < 2\Theta < 54$	3 < 20 < 54
Scan-Geschwind.	3-29.3	3-29.3
Zahl der Reflexe:		
Gemessen	10788	15011
Unabhängig	9969	8897
Beobachtet	7178	5048
Absorptionskoefi-		
zient μ (mm ⁻¹)	0.919	1.114
Verfeinerte		
Parameter	577	481
R/R _w	0.040/0.037	0.065/0.062

TABELLE 8. Atomkoordinaten ($\cdot 10^4$) der Nichtwasserstoffatome von 7b und äquivalente isotrope Temperaturparameter U_{eq} (pm²·

 10^{-1}) U_{eq} ist definiert als 1/3 der Spur des orthogonalen U_{ll} -Tensors

Atom	x	у	z	U _{eq}
Co(1)	3407(1)	8743(1)	7737(1)	19(1)
$C_0(2)$	4812(1)	7346(1)	6909(1)	18(1)
C(1)	3335(3)	0030(3)	8001(2)	24(1)
O(1)	3251(3)	10733(2)	8114(2)	40(1)
C(2)	5251(5) 6502(4)	6873(3)	6602(2)	-78(1)
O(2)	761A(3)	6501(2)	6372(2)	$\frac{20(1)}{\sqrt{7}(1)}$
C(2)	5184(3)	7962(2)	7060(2)	10(1)
(3)	5104(5)	7003(2)	8/10(1)	26(1)
C(4)	4420(2)	9749(2)	6700(7)	20(1)
O(4)	4429(3)	0740(3) 0214(2)	6214(2)	22(1)
D(1)	4/30(3)	7960(1)	0214(2) 8845(1)	20(1)
r(1) p(2)	2023(1) 4560(1)	/000(1) 6129(1)	7005(1)	20(1)
P(2)	4500(1)	0130(1) 0168(1)	6063(1)	20(1)
P(3)	1055(1)	9106(1) 7440(1)	6025(1)	20(1)
P(4)	3540(1)	7440(1)	8712(2)	19(1)
N(1) N(2)	1960(3)	9256(2)	6712(2)	22(1) 21(1)
N(2)	1000(3)	8550(2) 8667(2)	0244(2)	21(1) 24(1)
$\alpha(14)$	4240(3)	8007(3) 9704(2)	10516(2)	24(1)
O(14)	4093(4)	070 4 (J) 9026(2)	11107(2)	30(1)
C(13)	4673(4)	$\frac{6030(3)}{7247(2)}$	11197(2)	32(1)
C(12)	4202(4)	7347(3)	10400(2)	33(1)
C(10)	3555(4)	7307(3)	0703(2)	30(1)
C(10)	3370(3) 450(4)	7909(3)	9793(2)	23(1)
C(24)	430(4)	7344(3)	0131(3)	33(1) 48(2)
C(24)	-1446(4)	7311(3)	9131(3)	40(2) 58(2)
C(23)	- 1440(4)	8206(4)	10100(3)	59(2)
C(21)		8344(3)	0010(3)	42(2)
C(21)	1121(3)	7864(3)	9238(2)	25(1)
C(20)	2886(4)	4895(3)	8138(2)	30(1)
C(34)	2000(4) 2474(4)	4106(3)	7945(3)	38(2)
C(33)	3069(4)	3577(3)	7285(3)	37(1)
(32)	4092(4)	3823(3)	6805(2)	31(1)
C(31)	4506(3)	4607(3)	6996(2)	26(1)
C(30)	3928(3)	5139(3)	7668(2)	21(1)
C(45)	6419(4)	5585(3)	9175(2)	33(1)
C(44)	7681(4)	5096(3)	9500(3)	41(2)
C(43)	8671(4)	4410(4)	9067(3)	47(2)
C(42)	8431(4)	4229(3)	8303(3)	48(2)
C(41)	7185(4)	4736(3)	7956(3)	38(2)
C(40)	6161(3)	5408(3)	8394(2)	25(1)
C(55)	- 939(3)	8888(3)	7065(2)	27(1)
C(54)	- 2247(4)	9018(3)	7415(2)	32(1)
C(53)	- 2680(4)	9535(3)	8104(2)	32(1)
C(52)	- 1821(4)	9938(3)	8446(2)	32(1)
C(51)	- 513(3)	9805(3)	8101(2)	27(1)
C(50)	- 70(3)	9294(2)	7405(2)	21(1)
C(65)	1847(4)	10418(3)	5540(2)	34(1)
C(64)	1667(5)	11336(3)	5085(3)	41(2)
C(63)	952(5)	12212(3)	5423(3)	46(2)
C(62)	442(4)	12181(3)	6224(3)	47(2)
C(61)	643(4)	11268(3)	6691(3)	37(1)
C(60)	1326(3)	10380(3)	6344(2)	24(1)
C(75)	2857(3)	8113(3)	4382(2)	28(1)
C(74)	3134(4)	8542(3)	3617(2)	31(1)
C(73)	4373(4)	8720(3)	3449(2)	31(1)
C(72)	5335(4)	8450(3)	4035(2)	28(1)
C(71)	5062(3)	8024(3)	4801(2)	24(1)
C(70)	3814(3)	7865(3)	4992(2)	21(1)

TABELLE 8 (continued)

Atom	r	У	z	U_{eq}
C(85)	3280(4)	5856(3)	5168(2)	33(1)
C(84)	2765(5)	5119(3)	4981(3)	46(2)
C(83)	1646(5)	4981(3)	5419(3)	48(2)
C(82)	1052(4)	5556(3)	6049(3)	42(2)
C(81)	1556(4)	6301(3)	6251(2)	32(1)
C(80)	2673(3)	6459(3)	5798(2)	22(1)

6.6. μ -Carbonyl- μ -bis(diphenylphosphino)amido- μ diphenylphosphido-tetracarbonyldicobalt(+1) (Co-Co) (9)

1.15 g (1.62 mmol) $4 \cdot 1/2 C_6 H_6$ werden in 120 ml C₆H₆ unter Rühren bei 40°C gelöst. Nach Abkühlen auf Raumtemp, gibt man tropfenweise 1.01 ml einer 1.6 M Lösung von *n*-Butyllithium in *n*-Hexan (1.62) mmol) dazu. Die zu Beginn orangerote Lösung verfärbt sich nach gelbgrün, wobei der entstehende Lithiumkomplex 8 ausfällt. Nach 30 min Rühren bei Raumtemp. werden anschließend 0.3 ml ClPPh₂ zu der Suspension getropft. Der Niederschlag löst sich im Laufe der Reaktion auf und die Farbe der Lösung wechselt zu tiefrot. Nach 90 min Rühren wird die trübe Lösung über eine mit Fiterflocken gefüllte D4-Fritte abfiltriert um das ausgefallene LiCl abzutrennen. Anschließend engt man das Filtrat im Vakuum auf 40 ml ein und überschichtet es mit dem doppelten Volumen an n-Hexan. Dabei fällt ein gelbbrauner Niederschlag aus, der abgefrittet und mit *n*-Hexan gewaschen wird. Durch dreimaliges fraktioniertes Umkristallisieren aus CH_2Cl_2/n -Hexan läßt sich ein in geringen Mengen entstehendes gelbes, gegenüber 9 schwerer lösliches, Nebenprodukt abtrennen. Die vereinigten Filtrate werden im Vakuum eingeengt und mit 40 ml n-Hexan gerührt. Dabei fällt 9 solvatfrei als mikrokristallines Pulver aus. Löst man 9 in CH₂Cl₂ und überchichtet mit n-Hexan, so entstehen nach ca. 2 d rote Kristalle von 9 · CH₂Cl₂. 9 löst sich in THF, CH₂Cl₂, Aceton und CHCl₃. Es ist unlöslich in aliphatischen Kohlenwasserstoffen. Ausbeute: 0.45 g (0.54 mmol), 33.6 %. Schmp. (Zers.) > 210°C. Gef.: C, 59.11; H, 3.52; N, 1.14; C₄₁H₃₀Co₂NO₅P₃ (827.50) ber.: C, 59.51; H, 3.65; N, 1.69%. ¹H-NMR (CDCl₃): $\delta = 7.82$ (m, C₆H₅); 7.64 (m, C_6H_5); 7.37 (m, C_6H_5). ³¹P{¹H}-NMR (CDCl₃): $\delta = 198.50 (t, {}^{2}J(P_{N}-P_{CoCo}) = 76.6 \text{ Hz}, 1P, PPh_{2}^{\Theta}); 85.25$ $(d, {}^{2}J(P_{N}-P_{CoCo}) = 76.6 \text{ Hz}, 2P, dppa^{\Theta}). {}^{13}C{}^{1}H}-NMR$ (CDCl₃), (Kopplungskonstanten s. Tabelle 5); $\delta =$ 209.85 (5C, CO); 141.94 (4C, C-ipso, N-PPh2); 137.91 (2C, C-ipso, Co-PPh₂-Co); 132.15 (4C, C-o, Co-PPh2-Co); 130.83 (8C, C-o, N-PPh2); 130.34 (2C, C-p, Co-PPh₂-Co); 129.34 (4C, C-p, N-PPh₂); 128.43 (4C, C-m, Co-PPh₂-Co); 127.87 (8C, C-m, N-PPh₂).

TABELLE 9. Atomkoordinaten $(\cdot 10^4)$ der Nichtwasserstoffatome von $9 \cdot \text{CH}_2 \text{Cl}_2$ und äquivalente isotrope Temperaturparameter U_{eq} $(pm^2 \cdot 10^{-1})$. U_{eq} ist definiert als 1/3 der Spur des orthogonalen U_{ii} -Tensors

Atom	x	у	Z	Ueo
$\overline{C_{\alpha}(1)}$	473(1)	8403(1)	3803(1)	23(1)
$C_{\alpha}(2)$	1088(1)	0503(1)	3600(1)	22(1)
C(1)	524(7)	7990(5)	A217(2)	21(2)
O(1)	575(6)	7450(3)	4565(2)	52(3)
(1)	373(0)	7439(3) 9005(5)	4303(2)	32(3) 34(2)
O(2)	332(7)	7692(4)	3401(3)	54(3)
O(2)	2/0(0)	/082(4)	3097(2)	30(3) 07(2)
	1/69(7)	10342(3)	3091(3)	27(3)
0(3)	2201(5)	10832(3)	3/3/(2)	38(3)
C(4)	1147(7)	9367(5)	3031(3)	32(2)
O(4)	1213(6)	9205(4)	2681(2)	49(3)
C(5)	616(6)	9381(4)	4173(3)	22(3)
O(5)	556(5)	9657(3)	4516(2)	34(2)
P(1)	-1136(2)	8774(1)	3879(1)	25(1)
P(2)	- 440(2)	10050(1)	3544(1)	23(1)
P(3)	2048(2)	8732(1)	3793(1)	24(1)
N(1)	- 1315(5)	9531(3)	3668(2)	25(2)
C(15)	- 2795(8)	8729(5)	4406(3)	40(4)
C(14)	- 3322(8)	8747(5)	4804(4)	46(4)
C(13)	- 2789(9)	8779(5)	5184(4)	48(4)
C(12)	- 1805(8)	8797(5)	5179(3)	40(4)
C(11)	- 1262(8)	8785(5)	4789(3)	36(4)
C(10)	- 1771(7)	8755(4)	4407(3)	28(3)
C(25)	- 2270(7)	8341(5)	3163(3)	34(4)
C(24)	- 2789(8)	7848(6)	2927(3)	45(4)
C(23)	- 2911(8)	7193(6)	3080(3)	42(4)
C(22)	- 2489)	7004(5)	3468(4)	47(4)
C(21)	- 1972(8)	7482(5)	3727(3)	39(4)
C(20)	- 1861(7)	8162(4)	3568(3)	27(3)
C(35)	-3(7)	10716(5)	2764(3)	31(3)
C(34)	-214(8)	10969(5)	2354(3)	39(4)
C(33)	- 1156(9)	10863(5)	2181(3)	44(4)
C(32)	- 1856(8)	10531(5)	2419(3)	44(4)
C(31)	- 1646(7)	10284(5)	2831(3)	35(4)
C(30)	- 716(7)	10278(4)	3015(3)	24(3)
C(30)	- 163(7)	11/30(5)	3773(3)	$\frac{2}{31(3)}$
C(43)	-262(8)	12018(5)	4026(3)	$\frac{31(3)}{42(4)}$
C(43)	780(0)	11064(5)	4020(3)	40(4)
C(43)	- 705(9)	11240(6)	4411(4)	43(4)
C(42)	- 1210(9)	10769(5)	4323(3)	43(4)
C(41)	- 1119(0)	10/00(3)	4203(3)	JO(4)
C(40)	-373(7)	1001/(4)	36/4(3)	24(3)
C(55)	2547(0)	9373(3)	4499(3)	44(4) 61(5)
C(54)	2907(9)	9333(0)	40//(4)	40(4)
(53)	3897(9)	8/30(0)	5041(3)	49(4) 52(4)
(52)	3705(9)	8130(0)	4827(4)	52(4)
	3163(8)	8143(5)	4441(3)	39(4)
C(50)	2810(6)	8758(5)	4276(3)	27(3)
C(65)	2696(7)	7570(5)	3327(3)	30(3)
C(64)	3328(8)	7238(5)	3035(3)	38(4)
C(63)	4065(9)	7591(6)	2841(3)	51(4)
C(62)	4202(9)	8291(6)	2909(4)	61(5)
C(61)	3552(9)	8630(5)	3196(4)	54(5)
C(60)	2814(7)	8269(5)	3411(3)	27(3)
C(6)	- 6159(14)	9781(9)	6187(6)	134(7)
Cl(1)	- 5152(6)	9196(4)	6112(3)	252(4)
Cl(2)	- 5823(4)	10351(3)	6576(2)	174(2)

6.7. Röntgenstrukturanalyse von 7b und $9 \cdot CH_2Cl_2$ [64]

Zur Röntgenstrukturanalyse geeignete orangerote Kristalle von 7b und rote Kristalle von $9 \cdot CH_2Cl_2$ wurden aus THF/n-Hexan bzw. CH₂Cl₂/n-Hexan gewonnen und unter Stickstoffatmosphäre bei 200 K vermessen. Die Röntgenstrukturanalyse wurde auf einem automatischen Vierkreisdiffraktometer (Siemens P4) durchgeführt. Die Strukturlösung erfolgte mit direkten Methoden (SHELXTL-PLUS, [65]) mit anisotroper Verfeinerung der Nichtwasserstoffatome. Die Lagen der Phenylwasserstoffatome wurden für ideale Geometrie berechnet und bei der Verfeinerung festgehalten. Die Intensitätsmessung erfolgte mit ω -Scan (3.0-30°/min) im Beugungswinkelbereich $3^{\circ} < 2\Theta$ < 54° für 10788 Reflexe bei 7b und 15011 Reflexe bei $9 \cdot CH_2Cl_2$. Der asymetrische Datensatz ergab bei 7b 9969 Reflexe, wovon 7178 mit $F > 4\sigma$ (F) "beobachtet" wurden. Im Falle von 9.1/2 CH₂Cl₂ ergab der asymetrische Datensatz 8897 Reflexe und davon "beobachtete" man 5048 mit $F > 4\sigma$ (F). Tabelle 7 entält die wichtigsten Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von 7b und 9. CH_2Cl_2 . In den Tabellen 8 bzw. 9 werden die Atomparameter und die äquivalenten isotropen Thermalparameter von 7b bzw. $9 \cdot CH_2Cl_2$ aufgeführt.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, der Hoechst AG, Frankfurt/Main, und hier insbesondere Herrn Prof. Dr. K. Kühlein für die Förderung der vorliegenden Untersuchungen. Herrn Prof. Dr. D. Sellmann danken wir für die Unterstützung bei den Röntgenstrukturbestimmungen.

Literatur

- 1 J. Ellermann, J. Sutter, F.A. Knoch und M. Moll, Chem. Ber., 127 (1994) 1015.
- 2 D.F. Clemens und H.H. Sisler, Inorg. Chem., 4 (1965) 1222.
- 3 H. Nöth und L. Meinel, Z. Anorg. Allg. Chem., 349 (1967) 225.
- 4 O. Schmitz-Du Mont, B. Ross und H. Klieber, Angew. Chem., 79 (1967) 869.
- 5 J. Ellermann und W.H. Guber, Z. Naturforsch., Teil B, 28 (1973) 310.
- 6 J. Ellermann und W. Wend, J. Organomet. Chem., 258 (1983) 21.
- 7 A. Blagg, S.W. Carr, G.R. Cooper, I.D. Dobson, J.B. Gill, D.C. Goodall, B.L. Shaw, N. Taylor und T. Boddington, J. Chem. Soc., Dalton Trans., (1985) 1213.
- 8 J. Ellermann und W. Wend, Nouv. J. Chim., 10 (1986) 313.
- 9 P. Steil, U. Nagel und W. Beck, J. Organomet. Chem., 366 (1989) 313.
- 10 R. Uson, A. Laguna, M. Laguna, M.N. Fraile, P.G. Jones und G.M. Sheldrick, J. Chem. Soc., Dalton Trans., (1986) 291.

- 11 R. Uson, J. Fornies, R. Navaro, J.I. Cebollada, J. Organomet. Chem., 304 (1986) 381.
- 12 D.S. Payne und A.P. Walker, J. Chem. Soc. (C) [London], (1966) 498.
- 13 J. Ellermann, E.F. Hohenberger, W. Kehr, A. Pürzer und G. Thiele, Z. Anorg. Allg. Chem., 464 (1980) 45.
- 14 J. Ellermann, G. Szucsanyi, K. Geibel und E. Wilhelm, J. Organomet. Chem., 263 (1984) 297.
- 15 J. Ellermann und L. Mader, Z. Naturforsch., Teil B, 35 (1980) 307.
- 16 G.T. Andrews, I.J. Colquhoun und W. McFarlane, Polyhedron, 2 (1983) 783.
- 17 J. Ellermann, F.A. Knoch und K.J. Meier, Z. Naturforsch., Teil B, 46 (1991) 1699.
- 18 J. Ellermann, F.A. Knoch, K.J. Meier und M. Moll, J. Organomet. Chem., 428 (1992) C44.
- 19 M.P. Garcia, M.V. Jimenez und L.A. Oro, J. Organomet. Chem., 438 (1992) 229.
- 20 P. Bhattacharyya, R.N. Sheppard, A.M.Z. Slawin, D.J. Williams und J.D. Wollins, J. Chem. Soc., Dalton Trans., (1993) 2393.
- 21 C. Moreno, M.J. Macazaga und S. Delgado, J. Organomet. Chem., 415 (1991) 271.
- 22 J. Ellermann, F.A. Knoch und K.J. Meier, Z. Naturforsch., Teil B, 45 (1990) 1657.
- 23 J. Ellermann und K.J. Meier, Z. Anorg. Allg. Chem., 603 (1991) 77.
- 24 M.T. Costello, D.R. Derringer, P.E. Fanwick, A.C. Price, M.I. Rivera, E. Scheiber, E.W. Siurek III und R.A. Walton, *Polyhedron*, 9 (1990) 573.
- 25 C. Moreno, M.J. Macazaga, M.L. Marcos, J. Gonzales-Velasco und S. Delgado, J. Organomet. Chem., 452 (1993) 185.
- 26 J. Ellermann, N. Geheeb, G. Zoubek und G. Thiele, Z. Naturforsch., Teil B, 32 (1977) 1271.
- 27 G. Liehr, G. Szucsanyi und J. Ellermann, J. Organomet. Chem., 265 (1984) 95.
- 28 A. Blagg, G.R. Cooper, P.G. Pringle, R. Robson und B.L. Shaw, J. Chem. Soc., Chem. Commun., (1984) 933.
- 29 R. Uson, A. Laguna, A. Navarro, R.V. Parish und L.S. Moore, *Inorg. Chim. Acta*, 112 (1986) 205.
- 30 J. Ellermann und W. Wend, Z. Anorg. Allg. Chem., 543 (1986) 169.
- 31 H. Schmidbaur, F.E. Wagner und A. Wohlleben-Hammer, Chem. Ber., 112 (1979) 496.
- 32 D.R. Derringer, P.E. Fanwick, J. Moran und R.A. Walton, *Inorg. Chem.*, 28 (1989) 1384.
- 33 D.F. Clemens, H.H. Sisler und W.S. Brey (Jr.), Inorg. Chem., 5 (1966) 527.
- 34 J. Ellermann und M. Lietz, Z. Naturforsch., Teil B, 35 (1980) 64.
- 35 H. Schmidbaur, S. Lauteschläger und B. Milewski-Mahrla, Chem. Ber., 116 (1983) 1403.
- 36 H. Schmidbaur, S. Lauteschläger und B. Milewski-Mahrla, J. Organomet. Chem., 254 (1983) 59.
- 37 M.C. Gimeneo, A. Laguna, M. Laguna, F. Sanmartin und P.G. Jones, Organometallics, 12 (1993) 3984.
- 38 J. Ellermann, J. Sutter, F.A. Knoch und M. Moll, Angew. Chem., 105 (1993) 763; Angew. Chem., Int. Ed. Engl., 32 (1993) 700.

- 39 J. Ellermann, J. Sutter, F.A. Knoch und M. Moll, Z. Anorg. Chem., 619 (1993) 2006.
- 40 A. Schmidpeter, F. Steinmüller und W.S. Sheldrick, Z. Anorg. Allg. Chem., 579 (1989) 158.
- 41 H. Schmidbaur, S. Lauteschläger und F.H. Köhler, J. Organomet. Chem., 271 (1984) 173.
- 42 A. Schmidpeter und G. Burget, Angew. Chem., 97 (1985) 602; Angew. Chem., Int. Edit. Engl., 24 (1985) 580.
- 43 H. Schmidbaur, S. Schnatterer, K.C. Dash und A.A. Aly, Z. Naturforsch., Teil B, 38 (1983) 62.
- 44 J. Ellermann und W. Wend, J. Organomet. Chem., 281 (1985) C29.
- 45 M. Gomez, G. Muller, J. Sales und X. Solans, J. Chem. Soc., Dalton Trans., (1993) 221.
- 46 P. Gabold, Diplomarbeit, Universität Erlangen-Nürnberg, 1992.
- 47 D. Pohl, geb. Deac, *Diplomarbeit*, Universität Erlangen-Nürnberg, 1993.
- 48 C. Moreno, J. Macazaga und S. Delgado, Inorg. Chim. Acta, 182 (1991) 55.
- 49 L. Ernst, ¹³C-NMR Spektroskopie, UTB 1061, Dr. Dietrich Steinkopff-Verlag, Darmstadt, 1980, S. 86.
- 50 G.T. Andrews, I.J. Colquhoun und W. McFarlane, *Polyhedron*, 2 (1983) 783.
- 51 H.O. Kalinowski, St. Berger und S. Braun, ¹³C-NMR-Spektroskopie, G. Thieme Verlag, Stuttgart, New York, 1984, S. 199.
- 52 H.O. Kalinowski, St. Berger und S. Braun, ¹³C-NMR-Spektroskopie, G. Thieme Verlag, Stuttgart, New York, 1984, S. 74.
- 53 G. de Leeuw, J.S. Field, R.J. Haines und E.M. Minshall, S. Afr. J. Chem., 41 (1988) 9.
- 54 J. Ellermann, M. Moll und N. Will, Z. Anorg. Allg. Chem., 574 (1989) 41.
- 55 J. Ellermann und L. Mader, Spectrochim. Acta, 37A (1981) 449.
- 56 E. Maslowsky Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, S. 399.
- 57 D.H. Whiffen, J. Chem. Soc. (London), (1956) 1350.
- 58 G.G. Sumner, H.P. Klug und L.E. Alexander, Acta Crystallogr., 17 (1964) 732.
- 59 D.J. Elliot, D.G. Hohlah, A.N. Hughes, V.R. Magnuson, I.M. Moser und R.J. Puddephatt, *Bull. Soc. Chim. France*, 129 (1992) 676.
- 60 H. Nöth, E. Fluck, Z. Naturforsch., Teil B, 39 (1984) 744.
- 61 J. Ellermann, E. Köck, H. Zimmermann und M. Gomm, Acta Crystallogr., C43, (1987) 1795.
- 62 N.N. Greenwood und A. Earnshaw, *Chemie der Elemente*, VCH-Verlag, Weinheim (Deutschland), (1988), S. 698.
- 63 Organikum, 16. Auflg., VEB Deutscher Verlag der Wissenschaften, Berlin, 1986, S. 638 ff..
- 64 Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen unter den Hinterlegungsnummern CSD-400622 (7b) und CSD-400623 (9 · CH₂Cl₂), der Autoren und des Zeitschriftenzitats angefordert werden.
- 65 SHELXTL-PLUS for Siemens Crystallographic Research Systems, Release 4.11/V, Copyright 1990 by Siemens Analytical X-Ray Instruments Inc., Madison, WI.